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A study of compressible supersonic turbulent flow in a plane channel with isothermal 
walls has been performed using direct numerical simulation. Mach numbers, based on 
the bulk velocity and sound speed at the walls, of 1.5 and 3 are considered; Reynolds 
numbers, defined in terms of the centreline velocity and channel half-width, are of 
the order of 3000. Because of the relatively low Reynolds number, all of the relevant 
scales of motion can be captured, and no subgrid-scale or turbulence model is needed. 
The isothermal boundary conditions give rise to a flow that is strongly influenced by 
wall-normal gradients of mean density and temperature. These gradients are found to 
cause an enhanced streamwise coherence of the near-wall streaks, but not to seriously 
invalidate Morkovin's hypothesis : the magnitude of fluctuations of total temperature 
and especially pressure are much less than their mean values, and consequently the 
dominant compressibility effect is that due to mean property variations. The Van 
Driest transformation is found to be very successful at both Mach numbers, and 
when properly scaled, statistics are found to agree well with data from incompressible 
channel flow results. 

1. Introduction 
This paper addresses the effects of compressibility on supersonic wall-bounded 

turbulence. These can be broadly categorized as one of two types: those associated 
with variations of the mean properties (such as density and viscosity), and those 
due to fluctuations of thermodynamic quantities. It is often assumed that only the 
mean effects are significant for transonic and supersonic wall-bounded flows (those 
with free-stream Mach number less than about 5 )  (Bradshaw 1977; Spina, Smits & 
Robinson 1994). A main objective of the present work is to quantify the degree to 
which this is in fact true. Another is to evaluate modelling concepts such as the 
Morkovin hypothesis and the Van Driest transformation (Bradshaw 1977). 

To this end we have undertaken a direct numerical simulation (DNS) study of 
turbulent supersonic flow in an isothermal-wall plane channel. Mach numbers, based 
on wall temperature and bulk velocity, of 1.5 and 3 are utilized. Because all relevant 
temporal and spatial scales of motion are resolved, no subgrid-scale or turbulence 
model is needed ; however, finite computer resources limit the simulations to relatively 

t Present address: Department of Theoretical and Applied Mechanics, University of Illinois, 
Urbana, IL 61801 USA. 
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low Reynolds numbers (values of the order of 3000, based on mean centreline velocity 
and channel half-width). 

(For an 
overview of the experimental and theoretical compressible turbulence work done to 
date readers are referred to review articles by Bradshaw (1977), Lele (1994) and 
Spina et al. (1994); catalogues of compressible boundary layer experimental data 
have been developed by Fernholz & Finley (1977, 1980), Fernholz et al. (1989) and 
Settles & Dodson (1991).) These open-domain DNS studies, which are reviewed in 
Lele (1994), provide a useful reference in our attempt to isolate compressibility effects 
unique to wall-bounded flows. Of even more relevance here are the recent supersonic 
boundary layer DNS of Guo & Adams (1994) and Rai, Gatski & Erlebacher (1995). 
Because both groups impose adiabatic boundary conditions and consider the spatially 
developing layer, their mean profiles will differ from those presented below. Thus, a 
direct comparison of the Guo & Adams and Rai et aE. data with the present date is 
not possible. An adiabatic wall is also used by Ducros, Compte & Lesieur (1993), 
Guo, Kleiser & Adams (1994) and Hatay & Biringen (1995). Ducros et al. and Guo 
et al. use DNS to investigate transition of temporally and (by the latter) spatially 
evolving Mach 4.5 layers; the former also use large-eddy simulations to compute 
the resulting high-Reynolds-number fully turbulent flow. Hatay & Biringen perform 
DNS of a steady parallel-flow Mach 2.5 boundary layer. In the future it is expected 
that these complementary studies (see also Childs & Reisenthel 1995) will illuminate 
behaviour that is common to all wall-bounded compressible turbulence. 

For the Mach number range investigated in this study we find that most quantities 
of engineering interest are dominated by variable-property effects, and both the 
Morkovin hypothesis and the Van Driest transformation are on the whole quite 
successful. However, ‘pure compressibility’ effects are not totally negligible. For 
example, significant large-scale acoustic fluctuations are found between the channel 
walls, although they do not strongly alter the vortical field (cf. Kovhsznay 1953). 
A noteworthy ‘structural’ change is observed, however, in that the near-wall streaks 
become more coherent in the streamwise direction as the Mach number increases. The 
evidence for and explanation of these phenomena will be presented below. We will 
also discuss the accuracy and limitations of the numerical results, compare the data 
to those found for the incompressible channel, illustrate the invariance to (supersonic) 
Mach number of properly scaled statistics, and address the basic modelling issues 
mentioned above; further analysis of the modelling implications of the DNS results 
(such as the relative merits of Favre and ensemble averaging) is given in Huang, 
Coleman & Bradshaw (1995), which can be viewed as a companion to this paper. 

The first compressible DNS studies were of flows in open domains. 

2. Problem formulation and numerical approach 
The plane channel geometry was chosen so that finite Mach number effects can be 

isolated by comparing the present results to well-established incompressible channel 
data (Kim, Moin & Moser 1987). Here the fluid is assumed to be an ideal gas 
with constant specific heats, constant Prandtl number, and power-law temperature- 
dependent viscosity. Isothermal-wall boundary conditions are imposed so that a 
statistically stationary state can be obtained. The flow is driven by a uniform (in 
space) body force (rather than a mean pressure gradient) to preserve streamwise 
homogeneity, with the body force chosen to vary in time such that the total mass flux 
remains constant. 

In what follows, all quantities are non-dimensionalized by the wall temperature, the 
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channel half-width, the bulk-averaged (‘mixed-mean’) density, and the bulk velocity, 
such that J_:’(qu)dy = 1, where the channel walls are at 
y = fl. We use p to represent the density, u = u1 the streamwise velocity, ( x , y , z )  = 
( x l ,  x2, x3) respectively the strcamwise, wall-normal, and spanwise coordinates, and 
angle brackets denote an averagc over time and streamwise and spanwise directions. 
The non-dimensional governing equations are then 

S_:’(p)dy = 1 and 

aQJ $9’ (3) 
aT aT c?u. y ( y  - 1)M2 zij duj 

~ + U’-- = - (y - 1 ) T L  + 
at Idx j  8Xj Re p ax j  RePr  p dxj 

where 

Since the pressure is normalized by the bulk density and bulk velocity, the ideal gas 
law is p = p T / y M 2 .  The body force term is non-zero only for i = 1. Furthermore, 
note that GI,  which is uniform in space, is analogous to ( - l / p ) a P / d x  in pressure- 
driven flows, so the ‘equivalent pressure gradient’ in (2) is not uniform in y (see figure 
10 of Huang et al. 1995). (In retrospect, dividing the body force in (2) by p would 
have made the connection with pressure-driven flows more straightforward, although 
all qualitative and order-of-magnitude conclusions, and indeed many dimensionless 
parameters such as spectrum shapes and correlation coefficients, obtained here will 
also apply to the pressure-driven case.) The purpose of 9, the source/sink term 
in ( 3 ) ,  is explained below. Equations (1)-(3) are solved numerically subject to the 
isothermal, no-slip boundary conditions, 

T = l  and u = O  at y = + _ l .  (4) 

No boundary conditions on density or pressure are imposed; instead the integral 
constraint that the bulk density remain constant in time is applied. 

Relevant non-dimensional parameters are (i) a Mach number, M ,  based on the 
bulk velocity and wall sound speed; (ii) a Reynolds number, Re, based on the bulk 
density, bulk velocity, channel half-width, and wall viscosity; (iii) the Prandtl number, 
Pr;  (iv) the ratio of specific heats, y; and (v) the viscosity exponent, n, where the 
dynamic viscosity p oc T”. These five parameters are used to define the various DNS 
runs. 

Besides choosing appropriate values for the ‘physical’ parameters, we will also 
artificially introduce another to allow us to differentiate between mean and fluctuation 
compressibility effects. The Mach number appears in the internal energy equation (3) 
in the term that represents the irreversible loss of kinetic energy into heat. Following 
Buell (1991), we interpret (in our simulations) the actual Mach number M in (2) and 
the ‘dissipation Mach number’ (i.e. the Mach number parameter appearing in ( 3 ) ,  
denoted Md) as separate parameters. By setting Md to values different from M in the 
DNS, we produce the effective heat source/sink 9 in (3)’ which is given by 
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Case M Md Re P r  y p 
A 1.5 1.5 3000 0.7 1.4 
B 3 3 4880 0.7 1.4 TO7 

AX 1.5 0 3000 0.7 1.4 

TABLE 1. DNS physical parameters. 

m, mp m, n, n4. n, L, L, 
110 90 60 144 119 80 471 4z/3 

TABLE 2. DNS numerical parameters. 

Consequently, we can consider cases with different mean temperature profiles (and 
thus different mean property variations) at the same M .  Results from these ‘unphysi- 
cal’ M # Md DNS runs can, therefore, be used to determine the relative importance 
of turbulent-fluctuation and variable-property influences at a given Mach number. 

Three DNS cases will be discussed, with Mach numbers of M = 1.5 and 3. All 
the runs share the same Prandtl number, specific heat ratio, and viscosity exponent 
( P r  = 0.7, y = 1.4 and n = 0.7), while the Reynolds number (for reasons given below) 
is either 3000 or 4880. A summary of the parameters is listed in table 1. Cases 
denoted by a single letter (A and B) in table 1 represent ‘physical’ simulations for 
which Md = M .  For the Md # M run, Case AX, M = 1.5 and Md = 0. Since the 
temperature fields in both the physical and unphysical runs depend almost exclusively 
on Md (Coleman et al. 1993), this parameter combination will produce the behaviour 
of the ‘extra’ source/sink 9, equation ( 5 ) ,  that is necessary to isolate variable-property 
and fluctuation effects. (Note that while the body force @ contributes to the kinetic 
energy budget, it does not appear in the internal energy equation.) With Md = 0, Y 
is such that the temperature and density are very nearly constant across the channel, 
as we shall see below. 

The DNS results are generated using the code developed by Buell to study com- 
pressible Couette flow. During the computations, the body force Gi is adjusted so 
that the total mass flux through the channel remains constant, and in this sense is 
analogous to the mean pressure gradient in Kim et aZ.’s incompressible channel flow; 
once the flow reaches a statistically stationary state the variations of Qi with time 
are small. The code utilizes a Fourier-Legendre spectral discretization along with 
a hybrid implicitkexplicit third-order four-substep time-advance algorithm designed 
to maximize the range of Mach numbers that can be considered (Buell 1991). The 
time advancement is applied to the expansion coefficients (i.e. done in ‘wave space’). 
A ‘Legendre transform’ (Buell 1991), and the ‘prime factor algorithm’ fast Fourier 
transform (Temperton 1985) are used in the inhomogeneous y- and homogeneous x- 
and z-directions, respectively. The numerical parameters used by all three runs are 
given in table 2, where L, and L, are the streamwise and spanwise domain sizes, 
and (mx, my, m,) and (nx ,  ny, n,) are respectively the number of expansion coefficients 
and collocation (quadrature) points in the streamwise, wall-normal, and spanwise 
directions. The x and z grid spacing in viscous wall units is Ax+ w 19 and Az+ = 12 
for Case A, Ax+ NN 39 and Az+ NN 24 for Case B and Ax+ NN 17 and Az’ NN 10 for Case 
AX; in the wall-normal direction, the first collocation point off the wall is at y+ = 0.1, 
0.2 and 0.1 - and the first ten points are within approximately y+ = 8, 17 and 7 - 
for Cases A, B and AX, respectively. That some of these values are larger than their 
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spanwise. 

normally accepted full-resolution maxima (Kim et al. 1987; Spalart 1988) does not 
imply the present DNS are under-resolved: because of the rapid near-wall variations 
of mean properties, measuring the grid spacing in terms of the friction velocity and 
viscosity at the wall does not yield a straightforward indication of resolution quality 
for this flow (cf. figure 2b of Huang et al. 1995). We instead rely on energy spectra to 
verify that the parameters listed in table 2 are adequate (see figures 1 and 2). 

Initial conditions for Case A were given by superimposing random velocity fluc- 
tuations upon a laminar parabolic velocity profile ( ( u )  = 1.5(1 - y2),  ( u )  = (w) = 0) 
and uniform density and temperature fields ( ( p )  = ( T )  = 1); Cases B and AX used 
a mature Case A field. After an initial transient (during which the solutions were 
transferred from relatively coarse to finer grids), all three cases relaxed to a fully re- 
solved statistically stationary state. The runs were made on the ACF and NAS Cray 
YMP and C-90 computers at NASA Ames Research Center. The code performed at 
approximately 350 Mflops on the C-90 and required about 32 CPU seconds per full 
timestep (four substeps). For Case B about 30 full steps are needed to advance one 
non-dimensional time unit. 
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FIGURE 2. Legendre coefficient spectra (summed over k,  and k Z )  for (a) Case A ( M  = 1.5), and 
( h )  Case B ( M  = 3): symbols as figure 1. Because of orthogonality of Legendre polynomials, and 
the form of basis functions (Buell 1991), spectra denote the &-norm (Fletcher 1984) of p and the 
L2-norm of y-derivatives of u, u, w and T .  

3. Results 
3.1. 'Physical' simulations (9 = 0) 

We begin by presenting data from the runs without the source/sink term, i.e. with 
Md = M .  These M = 1.5 and M = 3 results will be compared to data from Kim 
et aE.'s (1987) M = 0 incompressible channel DNS, which will reveal the influence 
of increasing the Mach number into the supersonic regime. All of the statistics 
in this section were obtained by averaging over at least 25 fields spanning 150 
non-dimensional time units. 

3.1.1. Spectra and correlations 

An indication of the numerical fidelity of the DNS is provided by the streamwise 
and spanwise one-dimensional spectra from the channel centreline and near the walls, 
shown in figure 1 for Case A. They are typical of those found from all three DNS runs 
- Cases A, B and AX - in their rapid fall-off at high wavenumber, which suggests that 
the x- and z-resolution is adequate. The high-wavenumber streamwise and spanwise 
spectra of the velocity at both the channel centreline (figure lb,d) and near the wall 
(figure la,c) are similar to those found in the incompressible channel (see figure 3 of 
Kim et a!. 1987). In the present simulations, we find that the density and temperature 
spectra are closely related to each other (which implies that p' << (p)) and that their 
magnitudes are much larger near the walls than they are at the centreline. The 
'Legendre spectra' for Cases A and B (figure 2) verify that the wall-normal resolution 
is also sufficient. The 'saw-tooth' pattern in the low-mode spectra for p, u and T is 
the result of representing functions that have symmetric means in y with orthogonal 
polynomials whose even and odd members are decoupled (Buell 1991). 

The streamwise and spanwise correlations in figures 3 and 4 are also roughly 
equivalent to the incompressible results (cf. figure 2 of Kim et aE. 1987) except for 
two characteristics: the large spanwise coherence of the density and temperature at 
the centreline (figures 3d and 4d; note the large values at L,/2) and the greater 
streamwise coherence of the p, u, and T fields near the wall (figures 3a and 4a). 
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FIGURE 3. Two-point correlations for Case A (A4 = 1.5) at (a,c) near the wall, 1 - IyI = 0.04, and 
( b , d )  at the centreline: symbols as figure 1. (a ,b )  Streamwise; (c,d) spanwise. 

First consider the spanwise coherence in p and T at the centreline, which we believe 
to be caused by acoustic resonance - or in other words, associated with the so-called 
‘acoustic mode’ of compressible turbulence (Kovasznay 1953).t Evidence for this 
is provided by comparing the full correlations to those obtained by eliminating the 
contribution from several ‘acoustic eigenfunctions.’ This ‘acoustic extraction’ is done 
by projecting the DNS fields onto eigenfunctions of the linear inviscid isentropic 
problem for a base flow given by the mean density, temperature and streamwise 
velocity found in the DNS (see the Appendix for details). The dashed curve in 
figure 5 represents the density correlation obtained after the first three relevant (see 
the Appendix) wall-normal acoustic modes at the first three lowest-order streamwise 
wavenumbers k, for k, = 0 have been projected and removed from six DNS fields. 

7 Since entropy fluctuations are greatest near the walls (see figure 14 below) and because the mean 
shear couples the vorticity and dilatation perturbations - even for the linear inviscid case (Blaisdell, 
Mansour & Reynolds 1993) - the decomposition into ‘vortical’, ‘entropy’ and ‘acoustic’ modes 
(Kovisznay 1953) is apt to be most relevant near the centreline, where d{u)/dy and fluctuations of 
vorticity are smallest. 
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FIGURE 4. Two-point correlations for Case B ( M  = 3) at (a,c) near the wall, 1 - IyI = 0.04, and 
(b ,d )  at the centreline: symbols as figure 1. (a,b) Streamwise; ( c , d )  spanwise. 

(An average over six fields was taken, since it was not practical to perform the 
projection for the more than 25 fields used for the full average.) The solid curve 
shows the six-field average correlation before the eigenfunctions were removed. The 
magnitude of the reduction in the large-scale correlation in figure 5 suggests that the 
acoustic disturbances in the channel are primarily responsible for the large spanwise 
correlation. Note that because the computations assume that the channel walls are 
perfectly rigid (and use periodic boundary conditions), any acoustic signals present in 
the DNS are not expected to be identical to those found in laboratory wind tunnels, 
since in the simulations there is no mechanism by which the acoustic energy can 
radiate away. We shall see below, however, that the acoustic disturbances found 
here do not significantly affect the vorticity and entropy fields, especially near the 
walls. 

The other difference, mentioned above, between the two-point correlations for the 
present and incompressible DNS is in the larger near-wall streamwise correlations 
found in figures 3(a) and 4(a); this indicates that the near-wall streaks, which are 
characteristic of wall-bounded turbulent flows (Robinson 1991), are more coherent 
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F'IGURE 5. Two-point spanwise density correlations for Case A ( M  = 1.5) at the channel centreline: 
-, average over six full DNS fields; - - - - , six-field average with acoustic eigenfunctions 
removed. 

FIGURE 6. Contours of wall-normal vorticity on (x, z)-planes at 1 - IyI = 0.04 for (a) incompressible 
channel, M = 0 (Kim et al. 1987), ( b )  Case A ( M  = 1.5), and (c) Case B ( M  = 3.0): W, wy < 0 ;  0, 
my > 0. Flow from left to right; planes represent full flow domain. 
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in Cases A and B than in the incompressible channel results.? The reason for the 
increased streamwise coherence will be taken up below. For now we note that the 
coherence increases with increasing Mach number (cf. figure 2 of Kim et aE., and 
figures 3a and 4a). This Mach number dependence is also apparent in figure 6, 
which illustrates the tendency for the contours of near-wall wall-normal vorticity 
from instantaneous fields at M = 0, 1.5 and 3 to become ‘less wiggly’ as the Mach 
number increases into the supersonic regime. 

3.1.2. Mean projiles 
Isothermal walls lead to qualitatively different mean-property variations than those 

found in adiabatic-wall boundary layers (see for example Fernholz & Finley 1977), 
since they allow the heat generated by the dissipation to be transferred out of 
the channel. The present and adiabatic cases thus differ in that here the walls 
are colder than the bulk of the flow and, instead of occurring at the walls, the 
maximum temperature and minimum density are found at the channel centreline. 
Furthermore, the maximum gradients of mean density and temperature are located 
at y = +1. The mean flow is approximately isobaric, and the mean wall-normal 
pressure gradient is everywhere very small. For example, for both Cases A and 
B, yM2d(p)/dy is always less than 0.5% of the product of the mean temperature 
gradient and mean density at the wall (recall p = p T / y M 2 ,  which implies d(p)/dy sz 
((p)d( T)/dy + ( T)d(p)/dy)/yM2). Figure 7 shows that as the Mach number increases 
so does the rate of heat transferred through the walls, and the near-wall density and 
temperature gradients consequently become increasingly steep. As we shall see below, 
these sharp near-wall mean gradients are a very important attribute of the isothermal- 
wall flow. 

The profiles of local mean Mach number ( M )  = (uiy))/(a(y)) (where (a) is the mean 
sound speed, equal to { T )  l’’/M in the current non-dimensionalization), for Cases 
A and B are given in figure 8(a). The ‘sonic line’ (i.e. the elevation at which the 
local Mach number is unity) is located at 1 - lyl = 0.115 and 0.044, respectively. At 
M = 1.5, the mean centreline Mach number, M ,  = (uc)/(ac) ( (uc )  and (a,) are the 
mean values at the centreline), is also 1.5; at M = 3, however, M, = 2.2 (recall that 
the bulk Mach number M is defined using the wall temperature). The ‘friction Mach 
number’ M ,  = u,/(a,), where (a,) is the sound speed based on the wall temperature 

t It also implies that strictly speaking, near the walls the computational domain is too small 
in the streamwise direction, and that consequently the near-wall dynamics are not completely 
uninfluenced by the numerical parameters. This is not, however, thought to seriously affect any of 
the conclusions of this work. 
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-1.0 -0.5 

Case M ,  M,  Re, Re, -B, ( p W )  ( p C )  (Td (k )  
Ref.? 0 0 3250 180 0 1 1 1 1 

A 1.502 0.082 2760 222 0.049 1.355 0.980 1.378 1.252 
B 2.225 0.116 2872 451 0.137 2.388 0.952 2.490 1.894 

AX 1.742 0.095 3486 192 0.000 1.006 1.001 1.001 1.001 

? Incompressible channel data of Kim et al. (1987). 

TABLE 3. Time-averaged results. 

and Re (pw)u:  is the mean wall shear stress (w- and c-subscripts are used throughout 
to respectively denote values at the wall and the centreline), is 0.082 for Case A, and 
0.116 for Case B. Another 'inner layer' parameter (which along with M ,  is assumed 
to uniquely determine the compressible law of the wall) is the non-dimensional heat 
flux, B, = (-l/Pr Re)(d(T)/dy),/(p,) u, (Bradshaw 1977). It is negative here, since 
the heat transfer is from the flow to the wall; B, = -0.049 for Case A, and -0.137 for 
Case B, which respectively indicates moderate and strong cooling conditions (Huang 
& Coleman 1994). A summary of these and other time-averaged data for all the cases 
considered, including for reference Kim et al.'s (1987) M = 0 results, is given in table 
3. For the sake of future modelling studies, we note that for both Mach numbers the 
mean viscosity (p,) = ( T,") is to an excellent approximation equal to ( T,) = (T,) 0.7 

(cf. Huang et al. 1995). 
The variation with Mach number of the mean properties causes the bulk Reynolds 

number Re, and that based on the mean density, velocity and viscosity at the 
centreline, Re,, to become increasingly different as the Mach number increases. The 
ratio of Re to Re,, the Reynolds number based on u7, ( p , )  and ( p w ) ,  will also change 
with M ,  since Re/Re7 = l / ( p w ) u 7 .  At first glance, it might therefore appear that 
this Re-dependence on Mach number could cause the near-wall streak modification 
mentioned above (i.e. extra streamwise coherence with increasing M )  by lowering the 
Reynolds number and making the streamwise domain size smaller when measured in 
wall units. To address this question we examine how the variation across the channel 
of (R), the local mean Reynolds number based on ( P ( ~ ) ) ,  (w)) and (p (y ) ) ,  changes 
with Mach number. Figure 8(b)  indicates that the centreline Reynolds number is 
indeed higher in the incompressible DNS than that found here: the A4 = 1.5 centreline 
value (2760) is less than the 3250 quoted for the Kim et al. (1987) incompressible 
channel data (compare the dotted and solid curves). However, for the isothermal-wall 
flow the maximum mean temperature and minimum mean density - and therefore 
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the maximum mean kinematic viscosity ( p ) / ( p )  ~ occur at the centerline. The local 
Reynolds number in the present DNS is thus larger near the walls than when 
v = constant. This suggests that the enhanced near-wall coherence is a Mach number 
(or heat transfer) effect, and not due to Reynolds number differences per se, a fact 
that is reinforced by the Case B results. In order to obtain a local Reynolds number 
profile for M = 3 that is similar to that for Case A, the bulk Reynolds number was 
increased from 3000 to 4880. As the Case B profile (dotted curve) in figure 8(b) 
shows, ( R )  at any y is slightly larger than that for Case A. Changing Re causes the 
domain size in wall units, L; and Lt respectively, to increase from L'; = 2790 and 
L; = 930 for Case A to 5670 and 1890 for Case B. (For the incompressible DNS, Kim 
et al. used (L;, L;) = (2300,1150).) Therefore, the further increase of the near-wall 
streamwise correlations associated with the change from M = 1.5 to 3 (cf. figures 3a 
and 4a) is not a viscous effect. 

Fairly large r.m.s. Mach numbers are found for both cases, especially near the 
walls, where for M = 3 the maximum value approaches 0.3 (figure 94.  The 'turbulent 
Mach number', Mt = q / (a )  (q2  = (uiu:)), exhibits the same general behaviour as M,,, 
although figure 9(b) shows that it is consistently larger. The difference between the 
two, which is greatest for Case B, where the near-wall peak in M ,  is about 25% larger 
than that for M,,, points to a significant non-zero velocity-temperature correlation. 

The large density and temperature fluctuations associated with the near-wall Mt 
are illustrated in figure 10. Although both have r.m.s. values near the wall that 
are greater than 10% of their means, the joint probability density functions (p.d.f.) 
shown in figure 11 suggest that these disturbances are mostly of a non-acoustic 
nature, primarily the result of solenoidal 'passive mixing' across a mean gradient. The 
density-temperature and velocity-temperature p.d.f.s were taken from a single Case B 
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us. temperature for Case B ( M  = 3 ) :  (a,c) Near the wall (1 - ( y (  = 0.04); ( b , d )  at the centreline. 

realization, near a wall (1 - lyl = 0.04) and at the centreline. Note the strong negative 
p-T  and positive u-T correlations near the wall, which one would also find if the 
density and temperature were passive scalars with mean gradients as shown in figure 
7. On the other hand, iE the density-temperature interaction were purely isentropic, 
T' - (y - l)p', then (p'T') would be positive. Near the centreline (figure l lb) ,  where 
d(p)/dy and d(T)/dy m 0, the p-T correlation indicates (since it is greater than zero, 
though small) that the flow is more nearly isentropic, as the acoustic eigenfunction 
analysis discussed above suggests. 

There are some non-solenoidal effects however, that occur near the walls. Fig- 
ure 12 reveals that the mean dilatation within the channel is not zero, and the 
maximum compression (which strengthens with Mach number) occurs at about 
1 - IyJ = 0.03. Between -0.9 < y < 0.9 a weaker fairly uniform mean expan- 
sion occurs. The dilatation associated with the turbulent fluctuations is weaker 
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FIGURE 13. Profiles of (a) dilatation-to-enstrophy and ( b )  pressure-dilatation correlation 

ratios: - - - -, Case A ( M  = 1.5); . . . . . , Case B (M = 3). 
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FIGURE 14. Pressure and total temperature fluctuations for Case B ( M  = 3): . . . . , p';  -.-, TA. 

still. It is not, for example, important enough to directly increase the turbu- 
lent kinetic energy dissipation rate to any great degree. This can be seen from 
figure 13(a), which gives the ratio of the mean-square dilatation fluctuations to 
those of the mean-square vorticity : the ratio of dilatational-to-solenoidal homoge- 
neous kinetic energy dissipation (Zeman 1990; Speziale & Sarkar 1991; Lele 1994). 
While the ratio increases by an order of magnitude as M increases from 1.5 to 
3, it never becomes significantly larger than The other source term intro- 
duced into the turbulent kinetic energy transport equation by the compressibility, 
the pressure-dilatation correlation, is also found to be negligible (figure 13b). It 
is never greater than 1% of the (homogeneous) solenoidal dissipation anywhere 
in the flow.? The ability of some recently proposed dilatational-dissipation and 
pressure-dilation models to reproduce the above results is considered in Huang 
et aE. (1995). 

With such small dilatational effects present, one might surmise that this flow 
is governed well by Morkovin's (1964) hypothesis, which states that relationships 
between (relevant) statistical properties of turbulence are unaffected by compressibility 
if the r.m.s. density fluctuations are small (of order 1/10) compared to the absolute 
density (Bradshaw & Ferriss 1971; Bradshaw 1977; Spina et al. 1994). The density 
fluctuations for both Mach numbers are within the allowed range of 0(1/10) (figure 
10a), but since Morkovin's hypothesis does not claim to account for the influence 

7 Because the mean dilatation was mistakenly not removed from the (p'u'),,, correlation shown 
in figures 10 and 16 of Coleman (1993), it was erroneously claimed in that report that this term 
was significant. 
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FIGURE 15. Profiles of (a) Reynolds shear stress and ( b )  turbulent heat flux: -, Kim e f  al. ( M  = 0); 
- - - -, Case A (A4 = 1.5); . . . . -, Case B ( M  = 3). The wall values are (7,) = (d(u)/dy),v and 
(Qw) = (d(T)/dy)w 

of spatial gradients of mean properties (Bradshaw 1977), which are important here, 
the p’ criterion cannot be accepted as conclusive. Morkovin’s original conjecture is 
that at non-hypersonic Mach numbers, acoustic pressure fluctuations and variations 
of total temperature are negligible. It therefore follows that a more rigorous test of 
his hypothesis is to examine the magnitude of the pressure and total temperature 
fluctuations with respect to their means; this is done in figure 14, for the M = 3 case. 
Both the r.m.s. fluctuations of pressure p and total temperature TO = T+f(y-l)M2u,u, 
are much less than their mean values - with the former a much smaller percentage 
of its mean than the latter. Because of the non-zero heat transfer through the walls, 
the total temperature fluctuations are larger than those found near adiabatic walls. 
The M = 1.5 profiles (not shown) exhibit similar behaviour, with the p’ and TA 
curves each about half as large as the M = 3 results. The p ’ / ( p )  << 1 criterion is 
certainly met, with maximum r.m.s. values everywhere less than about 3%. And since 
the peak r.m.s. Ti is only about 20% of (To) ,  the total temperature requirement 
is also fairly well satisfied. (Note that the r.m.s. T ’ / ( T )  maximum is only about 
half that for the total temperature; figure lob.) The implications of the flow only 
approximately satisfying T i / (  To) << 1 upon Morkovin’s ‘strong Reynolds analogy’ - 
which is derived by assuming To is constant - is explored in Spina et al. (1994) and 
Huang et al. (1995). 

We thus expect that there is a good chance that Morkovin’s hypothesis regarding 
the invariance to Mach number of relevant statistical ratios will be valid for the 
present results. Indeed, for at least two important statistical ratios, the Reynolds-to- 
wall-shear stress ratio, (pu’v’)/( l/Re)(z,), and the turbulent-to-wall heat flux ratio, 
(pv’T’) / ( l /RePr)(Q,) ,  it is found to work very well. Figures 15(a) and 15(b), which 
contrast the Case A and B data with each other, and for the shear stress with 
Kim et al.’s (1987) incompressible channel statistics, demonstrate that both quantities 
are reasonably independent of Mach number. That the Case A and B Reynolds 
stress profiles have a lower maximum than the incompressible results (figure 15a) 
is probably due to the slightly lower effective Reynolds number of the present 
DNS. Two other statistical ratios found to be approximately independent of Mach 
number, and to agree with their incompressible counterparts, are the mixing length 
(-(u’v’))’/2/(d(u)/dy) and the Reynolds-shear-stress correlation coefficient; they are 
shown in figure 16. There is a slight increase with M of the near-wall maximum of 
I ( U ’ Z I ’ ) ~ / U ~ ~ ~ L $ , , ~  in figure 16(b) (and a slight decrease with M for 1 - IyI > O.l), but 
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FIGURE 16. Profiles of (a )  mixing length and ( b )  Reynolds stress correlation: 
-, Kim et al. ( M  = 0);  - - - -, Case A (A4 = 1.5); . . . . ., Case B ( M  = 3). 

the magnitude is almost certainly statistically insignificant? and not related to the 
enhanced streak coherence mentioned above. 

With the invariance of the mixing length established (figure 16a), the so-called 
Van Driest transformation for the mean velocity immediately follows. That is, the 
density-weighted mean velocity 

(where (pw) is the mean density at the wall and the + superscript denotes wall units 
given by ( T ~ ) ,  ( p w )  and (p,,,)), is expected to satisfy the incompressible log law, 

1 
(u);, = - lny’ + C, 

K 
(7) 

with K and C similar to their incompressible values, K = 0.41, and C = 5.2 (Bradshaw 
1977; Huang, Bradshaw & Coakley 1993; Huang & Coleman 1994). The wall-unit 
and Van Driest transformation (6) forms of the mean velocity are plotted in figures 
17(a) and 17(b), respectively. The figure 17(b) results are very similar to those shown 
in figure 1 ( b )  of Huang & Coleman ( 1  994), which were obtained by using a mixing- 
length formulation for the temperature to write ( u ) ; ~  as a function of only (u)+, 
the surface heat flux and the mean surface temperature (i.e. utilizing equation (7) 
of Bradshaw (1977)). (The Huang & Coleman paper also presents a mixing-length 
scheme generalized to simultaneously account for the viscous and log-law regions.) 
The agreement of the curves in figure 17(b), especially their slopes (see Huang & 
Coleman 1994), reinforces the validity for this flow of the Van Driest transformation 
and, by implication, that of the Morkovin hypothesis. 

The importance of properly accounting for the mean property variations in the 
near-wall scaling can be seen in figures 18 and 19. When normalized by conventional 
wall variables (defined in terms of the mean density, viscosity and shear stress at 
the wall), the differences between the non-zero-M and incompressible r.m.s. velocity 
and vorticity fluctuation profiles increase with Mach number (figures 18a and 19a). 
But when the ‘semi-local’ scaling suggested by Huang et aE. (1995) is used instead 

recall that ( ( ~ 1 2 )  - Re (pu’u’)) / (zW) = IyI and see Huang et aE. (1995)), the collapse is 
much better, for both velocity and vorticity. Antonia & Kim (1994) have shown that 
for incompressible boundary layers, only the y-component of vorticity is independent 

7 The larger increase in the near-wall value presented in Coleman (1993) was the result of 
assuming (u )  = 0, and is therefore incorrect. 

(replacing ( P w )  with ( P ( Y ) ) ,  ( P w )  with ( W Y ) ) ,  and u, with Uf(Y) = ((%v)/(P(Y,)Re)’/2; 
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FIGURE 18. RMS velocity fluctuations: -, Kim et al. (1987) (A4 = 0); - - - -, Case A (M = 1.5); 
. . . . .  , Case B (M = 3). (a) In wall units, and (b )  in semi-local coordinates. Wall variables y +  
and (u:):~~ based on (pw), (p,,,) and u, = ((r,+.)/Re(p,,,))'~*; semi-local quantities y' and (u:);~~ 
non-dimensionalized by (p(y$, ( P ( ~ ) )  and ufcV) = ((z,)/Re ( p ( ~ ) ) ) " ~ .  Upper, middle and lower curves 
denote u, w and u, respectively. 
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FIGURE 19. Profiles of (a ,b)  total and ( c , d )  wall-normal RMS vorticity fluctuations: symbols as 
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FIGURE 20. Mean profiles for Case AX ( M  = 1.5, Md = 0):  -, (u); - - - -, ( p ) ;  

. . . . . , ( T )  ( (p )  and (T) coincident). 

of Re when normalized by the wall values. Since the Case A and B profiles in figures 
19(c) and 19(d) agree well with M = 0 results for two Re (the solid and chain-dotted 
curves in figure 19(b) represent the incompressible Re, = 3250 and 7890 DNS data 
of Kim et a!. (1987) and Antonia & Kim (1994), respectively), this scaling of my 
preserves the Reynolds number invariance while also being independent of Mach 
number. The semi-local scaling for the friction velocity is valid here because the 
ratio of the local- to wall-shear stress is insensitive to M (figure 15a); it is therefore 
expected that a fully local scheme that replaced (2 , )  in the above definition of u:w 
with ( T ~ ~ ~ , J ~ ) )  = ( ~ ~ 2 )  - Re (pu'v') would also be effective. 

Note that the successful use of y', instead of y",  in the Van Driest transformation 
in figure 17(b) is not inconsistent with the semi-local scaling. The invariance of the 
mixing-length profiles (see figure 16a) - from which the Van Driest mapping is derived 
(Bradshaw 1977) - implies that if the mixing length is ~y and -(u'u') NN ( t w ) / ( p )  Re 
(both key assumptions in the development of the Van Driest transformation), the 
mean shear in the semi-local normalization (d(u)/dy)* z (d(u) /dy) / ( (p)~~2/ (~) )  is 
given by l/lcy*. It can also be shown that as y' increases (d(u)/dy)* approaches 
d(u)*/dy*, so that for sufficiently large y* ,  (u)*  w (l/K)lny' + C * ,  where C' is a 
different constant from that in (7) that will in general depend on the heat transfer 
and shear (i.e. B, and A!&) at the wall. 

3.2. Simulation with extra source (9 # 0 )  
The main motivation for the run described in this section, Case AX, is to determine 
the influence of the property variations on the behaviour (i.e. increased streamwise 
coherence with Mach number) of the near-wall streaks. Consequently, for this 
M = 1.5 simulation the 'dissipation Mach number' (see $2) is set to Md = 0, so that 
the non-zero temperature equation sink 9 ( 5 )  yields a mean density and temperature 
that are constant (figure 20). Resides these mean profile differences, the fluctuation 
fields are also quite different from their M = M ,  counterparts. To begin with, they 
are much weaker, with maximum r.m.s. p' and T' only about 40% and 15% as large, 
respectively, as those found for Case A (contrast figures 10 and 21). Furthermore, as 
one would expect for a flow with no mean heat transfer through the walls, the density 
and temperature fluctuations are approximately isentropic. If they were exactly so, the 
solid curve in figure 21 -~ which represents the isentropic temperature field associated 
with the density disturbances - would exactly coincide with the dashed profile, the 
actual r.m.s. temperature. As it is, the two are fairly close, especially near the channel 
centreline. A more straightforward indication of the isentropic p -T relationship is 
given by the p.d.f.s in figure 22. The axes are scaled so that the isentropic state, 
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FIGURE 21. RMS density and temperature profiles for Case AX (M = 1.5, Md = 0): 

- - - -, T'; ' . . . . )  p ' ;  -, ( y  - l)p&J(p). 

0.02 0.02 

0.01 0.01 

T' 0 0 

-0.01 -0.01 

-0.02 -0.02 
-0.025 0 0.025 0.050 -0.025 0 0.025 0.050 

P' P' 
FIGURE 22. Joint probability densities of density 0s. temperature for Case AX (M = 1.5, M,j = 0): 

(a )  Near wall (1 - IyI = 0.04); ( h )  at the centreline. 

p ' / ( p )  = ( y  - l ) T ' / ( T ) ,  lies along the diagonal connecting the lower-left with the 
upper-right corners of the plot. The p.d.f. contours for both locations imply that 
uniform-mean Case AX flow is to a good approximation isentropic. 

The near-wall streamwise correlations for Case AX are given in figure 23. No 
indication of the enhanced streak coherence found for Cases A and B is observed 
(cf. figures 3a and 4a), and in fact the correlations are very close to those observed 
at M = 0 (see figure 2 of Kim et al.). This leads us to perhaps the most significant 
conclusion of this section : non-zero wall-normal gradients of mean properties are 
required for the streak modification to occur. An explanation of this observation 
is found in figure 24, which compares profiles of S" = (p)Sq2f(p)(o:w~> for the 
three compressible cases, A, B and AX, with the M = 0 result. This quantity 
represents the ratio of a turbulent timescale, (p)q2/ ( ,u) (u~w~),  to that of the mean 
strain, S-' = (id(u)/dy)-'. Although it is common to use E = 2(p)(,(1s~1)/(p) (where 
S;, = +(ti;,, + ui,,)) to define the turbulent timescale, the choice used here is also valid, 
since E (which for incompressible flows is equivalent to the rate of turbulent kinetic 
energy dissipation) and ( ,u)(co~co~)/(p) have the same units and differ by at most three 
or four percent (see Huang et al. 1995). We find that as the Mach number increases, 
and the mean property variations become more extreme, the maximum timescale 
ratio increases from about 18 at M = 0 to nearly 28 at M = 3. The same tendency 
to increase with M is also found when E is used to represent the turbulent timescale, 
and for the shear-to-vorticity ratio S/o;,,,, (not shown). The agreement of the Md = 0 
(Case AX) and A4 = 0 profiles (the chain-dotted and solid curves) indicates that the 
increase of the timescale ratio is due to changes of the mean density and temperature. 
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FIGURE 23. Two-point correlations near the wall at 1 - lyl = 0.04 for Case AX ( M  = 1.5, Md = 0): 
symbols as figure 1. 

0 0.2 0.4 0.6 0.8 1.0 

1 - IYI 

FIGURE 24. Profiles of S’ = ~Re(y)(d(u)/dy)$/(p)(w~oj): -, Kim et al. (1987) ( M  = 0); 
- - - - , C a s e  A ( M =  1.5); . . . . ’ ,  Case B (M=3); - - . - - ,  Case AX ( M  = 1.5, Md = O ) .  

This fact, coupled with the observation that in homogeneous shear flow turbulent 
‘eddies’ become increasingly elongated in the streamwise direction as S’ increasest 
(Lee, Kim & Moin 1990) suggests that the enhanced streamwise coherence of the 
near-wall streaks found above is caused by the change of the turbulence-to-mean 
timescale ratio by the mean property variations. 

t Note also that although in general it is possible for S’ to become so large that its magnitude 
becomes irrelevant, Lee et aL’s results indicate that the peak value of S’ in turbulent boundary layers 
is not large enough that changes in the magnitude of the near-wall maximum have no effect (see 
their figure 14, for example, which compares evolution of the correlation length given by their DNS 
with that predicted by rapid distortion theory). And while a non-stationary homogeneous shear 
flow and a stationary non-homogeneous boundary layer are not expected to exactly correspond, the 
tendency in Lee et d ’ s  simulations for the asymptotic long-time ‘shape’ of eddies to be determined 
by the shear rate (see their figure 15) is taken as further evidence that the modification of near-wall 
streaks observed here is the result of changes in S’.  
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While searching for an explanation of the streak modification, another possibility 
was considered, in addition to that just presented. It assumed an analogy between 
the streamwise coherence of the streaks and the stability of compressible shear layers. 
That is, the region of high wall-normal vorticity between the high- and low-speed 
streaks was interpreted as a shear layer, and a compressibility mechanism responsible 
for increased stability was sought, with the increased stability being associated with 
the extra streamwise coherence. This approach was prompted by the large positive 
correlation between u and T near the walls, and in particular the fact that the low- 
speed streaks tend to be coldest and therefore have highest density (see figure l l a ,  c). 
The resulting variable-density ‘mixing layer’ at the edge of a cold low-speed streak was 
thought perhaps to be governed by the same dynamics responsible for the reduced 
spreading rates of compressible shear layers found by, for example, Brown & Roshko 
(1974), Papamoschou & Roshko (1986, 1988), Lele (1989) and Sandham & Reynolds 
(1991). In the present results it was observed that significant dilatational perturbations 
are focused along the cold low-speed streaks near the walls; that is, their lower sound 
speed caused the cold streaks to act as ‘acoustic wave guides.’ However, since the 
focused dilatational fluctuations propagate along the low-speed streaks at (locally) 
supersonic speeds, while vorticity fluctuations move much more slowly, any tendency 
for them to affect coy is probably slight - presumably any stabilizing influence is 
quickly followed by a destabilizing effect. Moreover, the maximum instantaneous 
‘convective Mach number’ Mc (the ratio of the velocity difference to the sum of the 
‘free-stream’ sound speeds) across the edge of the cold streak for Case B is only 
about 0.3. This quantity has been found to provide a good parameterization of 
compressibility effects on mixing-layer growth rates (Papamoschou & Roshko 1988), 
and significant compressibility effects are not seen experimentally until M ,  > 0.5 
(Papamoschou & Roshko 1986, 1988). We therefore conclude that the acoustic 
wave-guide phenomenon is a dynamically insignificant, passive effect, and acoustic 
stabilization is not significant in the streaks. It may, however, be important at Mach 
numbers higher than those considered here. 

4. Summary and concluding remarks 
DNS results for fully developed, isothermal-wall, compressible channel flow for 

Mach numbers, based on bulk velocity and wall sound speed, up to 3 have been 
obtained. These results, when properly scaled to account for mean property variations, 
agree in many ways with the incompressible DNS data of Kim et al. (1987). The 
Morkovin hypothesis, and the resultant Van Driest transformation, are found on 
the whole to be very successful, although the requirement that instantaneous total 
temperature remain constant is only approximately satisfied. 

The isothermal-wall flow is strongly influenced by sharp gradients of mean density 
and temperature that occur near the walls, to the point that most of the p and 
T fluctuations are the result of solenoidal ‘passive mixing’ of the temperature and 
density by the turbulence. Results found here are therefore not expected to be 
identical to those found for the adiabatic-wall case. Large-scale acoustic disturbances 
are observed to span the channel. While they are an important part of the density and 
temperature fluctuations near the centreline, these disturbances do not significantly 
affect the velocity field, especially near the walls (cf. Kovisznay 1953). The only ‘non- 
Morkovin’ phenomenon of note, in the sense that the ‘structure’ of the turbulence is 
modified, is an increase with Mach number of the streamwise coherence of the near- 
wall streaks. But instead of representing an exception to Morkovin’s postulate that 
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only mean property variations (and not thermodynamic fluctuations) are important 
at supersonic Mach numbers, the enhanced streak coherence ultimately has its source 
in the mean property variations, since they act to alter the relationship between the 
mean and turbulent timescales near the walls. Paradoxically, the modified structure 
of the streaks actually reinforces Morkovin’s hypothesis instead of contradicting it. 

The scheme introduced by Buell (1991) for differentiating between compressibility 
effects due to thermodynamic fluctuations and those caused by mean property vari- 
ations, using an effective heat source defined by a ‘dissipation Mach number’, was 
found to be a valuable tool. This approach, which was here employed to created a 
M = 1.5 flow with constant density and temperature profiles, has a wide potential 
application, and should be useful for other flow configurations and at higher Mach 
numbers. 
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Appendix. Determination of acoustic eigenfunctions 
The ‘acoustic extraction’ discussed in $3.1 is done by projecting the DNS fields 

on eigenfunctions of the linear inviscid isentropic equations for a given parallel base 
flow. That is, the density, velocity and pressure eigenfunctions are assumed to satisfy 

where V = W = 0 and p, + and r vary in y only. The isentropic relation (Ale) is 
invoked in order to limit attention only to ‘purely acoustic’ disturbances; the need for 
this assumption and its implications is discussed below. 

After substituting (Alc) into (Alb), and using a Fourier representation for the 
density and velocity fluctuations, such that p’(x,  t )  = Ck p(k, y) exp[i(k * x - wt)] and 
u:(x, t )  = Ck GI@,  y )  exp[i(k * x - wt) ] ,  the linearized, isentropic Euler equations in 
Fourier space at a given wavenumber k = (k , ,kz )  can be written in terms of the 
‘acoustic eigenfunctions’ qp(k, y) = (p(k, y),G(k, y),G(k, y), G(k, y)); as 2(4) = w4, 
where 

(A21 1, 
k,i@ + kx+G - id(pC)/dy + k,pG 

k,GG - i(dG /dy)C + k,a F/i i  
k , i G  - iad(p/p)/dy i k,GG + k,ap/p 

= 

and a = T I M 2  is the base-flow sound speed, with E = 0 at y = +1. 
The projection of the full DNS field onto the acoustic subspace is performed by 

computing the inner product J:; 4DNS-4kdy of the DNS field with eigenfunctions q i  of 
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the adjoint of 9 , 9 * ( q * )  = oq*, which is defined by J:’ 9(q)y*dy = JT; q*g*(q*)dy. 
The adjoint operator is 

, (A3) 1 k,$& + kx i i2G/p  + (i/p)d(ii2G)/dy + kzn2iL/p 

k,iiG + ipd(&)/dy - i(dii/dy)G 
kxiiG* + kXp& i kxii6$* + kzp& 

Y*(q*) = 

where L = 0 at y = f l .  
When the base flow is uniform (no y variation), the eigenfunctions from (A2) 

are irrotational, and the eigenvalues w from (A2) and (A3) give phase speeds c, = 
Re(o)/kx that satisfy 

where L is the wall-normal wavenumber (note that t is equivalent to the number of 
times and 2 change sign between -1 < y < +1). In $3.1 we use the Case A mean 
profiles shown in figure 7 as the base flow and numerically compute solutions to (A2) 
and (A3) using a non-uniform, staggered-grid finite difference scheme, which leads 
to ‘acoustic’ (isentropic) eigenfunctions that do not satisfy the above phase relation 
and, in fact, have non-zero vorticity near the walls. Near the channel centreline, 
however, the eigenfunctions have a more typical acoustic behaviour. That is, the ratio 
of the dilatation to the enstrophy is very large and for each integer L (number of sign 
changes in p̂ ) there are two eigenmodes, with one propagating upstream, and the other 
downstream, relative to the centreline velocity. The dashed curve in figure 5 represents 
the density field after the isentropic modes q/  that are recognized as acoustic in the 
range L = [0,1,2] have been projected and removed, for k,L,/27~ = [0,1,2] (using 
conjugate symmetry to account for k, < 0) and k,Lz/2n = 0. Only the eigenfunctions 
with (a)  very large dilatation-to-enstrophy ratio near the centreline, and (b)  no more 
than two modes at each L - one with positive and one with negative relative phase 
speed - are chosen from the full inviscid isentropic function space to be included in 
the projection. These modes are practically indistinguishable from those found from a 
more general non-isentropic analysis (suggested to us by Professor S. K. Lele), which 
replaces (Alc) by p’ - T p ’ / M 2  = p s’, where s’ is the entropy fluctuation, and uses 

ii - c, = + a [(L7T/2k,)2 + 1 p 2 ,  (A41 

and assumes dp/dy = 0 to obtain a non-isentropic counterpart to (A2): 

(A61 1, 
k,@ + kxypG - iyp &/dy + kzyp i? 

kxa2 - i(dii /dy)E + k,jj/p 
k x U 3  - idp/dy/p i k,@G + k$/p 

m) = 

where 5 = 0 at y = +1. (Note that the dependent variables are now gt (k ,y )  = 
(jj(k, y), G(k, y), Z(k, y), %(k, y)):.) Therefore, provided criteria (a) and (b )  are used 
to determine which modes are included in the projection, the relevant eigenfunctions 
can be obtained without invoking the isentropic assumption at the beginning of the 
analysis. 
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